
Probabilistic
Computation

Harold Frank and Alexa
Becker

http://www.youtube.com/watch?v=huIP__zhDTM

Computational

complexity theory

 Branch of the theory of computation
in theoretical computer science and

mathematics Classifying
computational problems into

specific sets according to their
inherent difficulty, and relating

those classes to each other.

https://en.wikipedia.org/wiki/Theory_of_computation
https://en.wikipedia.org/wiki/Theoretical_computer_science
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Computational_problems
https://en.wikipedia.org/wiki/Complexity_class

Complexity Class

A complexity class is a set of problems that can be solved with a quantum Turing

machine in polynomial time, exactly.

The most commonly used problems are decision problems. However, complexity

classes can be defined based on function problems, counting problems, optimization

problems, promise problems, etc.

Why does this matter?

The ability to make probabilistic decisions often helps algorithms solve problems

more efficiently.

https://en.wikipedia.org/wiki/Function_problem
https://en.wikipedia.org/wiki/Counting_problem_(complexity)
https://en.wikipedia.org/wiki/Optimization_problem
https://en.wikipedia.org/wiki/Optimization_problem
https://en.wikipedia.org/wiki/Promise_problem
https://en.wikipedia.org/wiki/Optimization_problem

Complexity Class

 A non-deterministic Turing machine is a deterministic Turing machine with an

added feature of non-determinism, which allows a Turing machine to have multiple

possible future actions from a given state.

One way to view non-determinism is that the Turing machine branches into many

possible computational paths at each step, and if it solves the problem in any of

these branches, it is said to have solved the problem.

***1
Probabilistic Computers take a simulation problem (forward) into an inference
program (reverse).

Computer: input to output

Simulation problems: background assumptions, produces output like a trajectory,
going from cause to effects

Inference problems: same background assumptions, inputs trajectory, outputs a
configuration of the world that explains it, effects back to causes. However, there is
fundamental uncertainty (probability) for what the cause(s) is. .

***2
Output depends not only on x (input) but also on a random variable(s) and a
probability distribution(s).

Different versions of Probability Machine:

The machine rejects input x if it has probability = 0, and it takes x for probability > 0.

‘ ‘ ‘ ‘ ‘ ‘ probability < ½, and it takes x for probability >= ½.

‘ ‘ ‘ ‘ ‘ ‘ probability <= ⅓, and it takes x for probability > ⅔.

You can set bounds on the input of x

***3
The output will give us specific answers (inferences) based on our conditions on x.

If the restrictions for x are say Probability >= 2/3 and Probability != 0, then if an x
is input with Probability in between, then the machine will do a random guess.

If not, the machine will give us an answer with much higher likelihood of being
right.

*** Transition Machines
 (simply) Like normal probabilistic computing, but there
are probabilities to determine if the next step moves on.

***Random Tape
Acts like an activation switch.

If enough random “coin flips” are recorded, the machine will move down the circuit.

A circuit may link to another circuit, or it may have a probability of outputting result.

***Languages Decided by Probabilistic
Computation
The machine language that is decided depends on the input x.

PTIME BTIME RTIME languages

Time dependent

***List of some Languages
Accept if pr[yes] > 0; reject if pr[yes] = 0 NTM

Accept if pr[yes] = 1; reject if pr[yes] < 1 co-NTM

Accept if pr[yes] > 1/2; reject if pr[yes] < 1/2 PTM

Accept if pr[yes] " 1/2; reject if pr[yes] < 1/2 co-PTM

Accept if pr[yes] > 2/3; reject if pr[yes] < 1/3 BPTM

Accept if pr[yes] > 2/3; reject if pr[yes] < 1/3 co-BPTM

Accept if pr[yes] > 2/3; reject if pr[yes] = 0 RTM

Accept if pr[yes] = 1; reject if pr[yes] < 1/3 co-RTM

Languages will output an answer with a probability of being right or wrong. Say
always ⅔ right and always ⅓ wrong.

It may output an answer that is “I don’t know” with a probability of say ½

BPP
BPP: bounded-error probabilistic polynomial time

A problem is in BPP if there is a polynomial time probabilistic algorithm such that:

 in BPP if and only if there exists a probabilistic Turing machine M, such that

● M runs for polynomial time on all inputs

● For all x in L, M outputs 1 with probability greater than or equal to 2/3

● For all x not in L, M outputs 1 with probability less than or equal to 1/3

BPR
BPR: randomized probabilistic polynomial time

● For all x NOT in L, M outputs 1 with probability 1

● no false positives

ZPP
ZPP: zero error probabilistic polynomial time

 the class of problems for which a probabilistic Turing machine exists with these properties:

● It always runs in polynomial time.

● It returns an answer YES, NO or DO NOT KNOW.

● The answer is always either DO NOT KNOW or the correct answer.

● It returns DO NOT KNOW with probability at most 1/2 (and the correct answer otherwise).

https://en.wikipedia.org/wiki/Turing_machine

BQP: bounded-error quantum polynomial time

if and only if there exists a

polynomial-time uniform family of

quantum circuits , such that

● For all , Qn takes n

qubits as input and outputs

1 bit

● For all x in L,

● For all x not in L,

BQP

Can be solved in worst case
polynomial time by a quantum
computer with probability > ⅔
(probability of error is bounded,
thus the “B.”)

https://en.wikipedia.org/wiki/Circuit_complexity#Polynomial-time_uniform

ZQP
ZQP: zero error quantum polynomial time

● For all x in L, M outputs “I don’t know” with a probability < ½

● Can be solved with zero error probability in expected polynomial time with a quantum computer

EQP
EQP: equational prover

● solvable by a quantum algorithm in polynomial time with zero error

The End

