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http://www.youtube.com/watch?v=huIP__zhDTM


Computational 

complexity theory

 Branch of the theory of computation 
in theoretical computer science and 

mathematics Classifying 
computational problems into 

specific sets  according to their 
inherent difficulty, and relating 

those classes to each other. 

https://en.wikipedia.org/wiki/Theory_of_computation
https://en.wikipedia.org/wiki/Theoretical_computer_science
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Computational_problems
https://en.wikipedia.org/wiki/Complexity_class


Complexity Class

A complexity class is a set of problems that can be solved with a quantum Turing 

machine in polynomial time, exactly.

The most commonly used problems are decision problems. However, complexity 

classes can be defined based on function problems, counting problems, optimization 

problems, promise problems, etc.

Why does this matter?

The ability to make probabilistic decisions often helps algorithms solve problems 

more efficiently.

https://en.wikipedia.org/wiki/Function_problem
https://en.wikipedia.org/wiki/Counting_problem_(complexity)
https://en.wikipedia.org/wiki/Optimization_problem
https://en.wikipedia.org/wiki/Optimization_problem
https://en.wikipedia.org/wiki/Promise_problem
https://en.wikipedia.org/wiki/Optimization_problem


Complexity Class

 A non-deterministic Turing machine is a deterministic Turing machine with an 

added feature of non-determinism, which allows a Turing machine to have multiple 

possible future actions from a given state. 

One way to view non-determinism is that the Turing machine branches into many 

possible computational paths at each step, and if it solves the problem in any of 

these branches, it is said to have solved the problem. 



***1
Probabilistic Computers take a simulation problem (forward) into an inference 
program (reverse). 

Computer: input to output

Simulation problems: background assumptions, produces output like a trajectory, 
going from cause to effects

Inference problems: same background assumptions, inputs trajectory, outputs a 
configuration of the world that explains it, effects back to causes. However, there is 
fundamental uncertainty (probability) for what the cause(s) is. . 



***2
Output depends not only on x (input) but also on a random variable(s) and a 
probability distribution(s). 

Different versions of Probability Machine: 

The machine rejects input x if it has probability = 0, and it takes x for probability > 0. 

‘ ‘                  ‘ ‘                         ‘ ‘     probability < ½, and it takes x for probability >= ½.

‘ ‘                  ‘ ‘                         ‘ ‘     probability <= ⅓, and it takes x for probability > ⅔.   

You can set bounds on the input of x



***3
The output will give us specific answers (inferences) based on our conditions on x.

If the restrictions for x are say Probability >= 2/3  and Probability != 0, then if an x 
is input with Probability in between, then the machine will do a random guess. 

If not, the machine will give us an answer with much higher likelihood of being 
right. 



*** Transition Machines
 (simply) Like normal probabilistic computing, but there 
are probabilities to determine if the next step moves on. 



***Random Tape
Acts like an activation switch.

If enough random “coin flips” are recorded, the machine will move down the circuit.

A circuit may link to another circuit, or it may have a probability of outputting result. 



***Languages Decided by Probabilistic 
Computation
The machine language that is decided depends on the input x. 

PTIME BTIME RTIME languages

Time dependent 



***List of some Languages 
Accept if pr[yes] > 0; reject if pr[yes] = 0 NTM 

Accept if pr[yes] = 1; reject if pr[yes] < 1 co-NTM

Accept if pr[yes] > 1/2; reject if pr[yes] < 1/2 PTM 

Accept if pr[yes] " 1/2; reject if pr[yes] < 1/2 co-PTM

Accept if pr[yes] > 2/3; reject if pr[yes] < 1/3 BPTM 

Accept if pr[yes] > 2/3; reject if pr[yes] < 1/3 co-BPTM

Accept if pr[yes] > 2/3; reject if pr[yes] = 0 RTM 

Accept if pr[yes] = 1; reject if pr[yes] < 1/3 co-RTM 



***
Languages will output an answer with a probability of being right or wrong. Say 
always  ⅔ right and always ⅓ wrong. 

It may output an answer that is “I don’t know” with a probability of say ½ 



 
 





BPP
BPP: bounded-error probabilistic polynomial time

A problem is in BPP if there is a polynomial time probabilistic algorithm such that:

 in BPP if and only if there exists a probabilistic Turing machine M, such that

● M runs for polynomial time on all inputs

● For all x in L, M outputs 1 with probability greater than or equal to 2/3

● For all x not in L, M outputs 1 with probability less than or equal to 1/3



BPR
BPR: randomized probabilistic polynomial time

● For all x NOT in L, M outputs 1 with probability 1

● no false positives



ZPP
ZPP: zero error probabilistic polynomial time

 the class of problems for which a probabilistic Turing machine exists with these properties:

● It always runs in polynomial time.

● It returns an answer YES, NO or DO NOT KNOW.

● The answer is always either DO NOT KNOW or the correct answer.

● It returns DO NOT KNOW with probability at most 1/2 (and the correct answer otherwise).

https://en.wikipedia.org/wiki/Turing_machine


BQP: bounded-error quantum polynomial time

 

if and only if there exists a 

polynomial-time uniform family of 

quantum circuits , such that

● For all            ,   Qn takes n 

qubits as input and outputs 

1 bit

● For all x in L, 

● For all x not in L, 

BQP

Can be solved in worst case 
polynomial time by a quantum 
computer with probability > ⅔ 
(probability of error is bounded, 
thus the “B.”)

https://en.wikipedia.org/wiki/Circuit_complexity#Polynomial-time_uniform


ZQP
ZQP: zero error quantum polynomial time

● For all x in L, M outputs “I don’t know” with a probability < ½

● Can be solved with zero error probability in expected polynomial time with a quantum computer



EQP
EQP: equational prover

● solvable by a quantum algorithm in polynomial time with zero error



The End


